Orally Bioavailable Small Molecule CD73 Inhibitor Reverses Immunosuppression by Reduction of Adenosine Production (Abstract #1242)

Xiaohui Du
ORIC Pharmaceuticals
AACR Annual Meeting 4/2020
Disclosure

• Xiaohui Du is an employee of ORIC Pharmaceuticals
CD73 is required for adenosine production and linked to therapy resistance

Therapeutic Hypothesis
- CD73 inhibition may enhance activity of chemotherapy and immunotherapy
- Small molecule approach may differentiate in dosing regimen and tumor penetration

CD73
- Overexpressed across cancer types driving local elevation of adenosine
- Overexpression correlated with poor prognosis
- Mediates immunosuppression and chemoresistance via adenosine production
Surveying linker region towards exo phosphonate led to novel starting point

Müller J. Med. Chem. 2015, 58, 6248.

- Replace bisphosphonate motif to reduce overall polar surface area and charge
- Internal-capped phosphonate tolerated; linker length to exo phosphonate important
- Ether-linked phosphonic acid shows early signs of oral bioavailability
Co-crystal structure of 5 with CD73 provided possible directions for potency improvement

- Can α-substitution further improve potency?

5: IC$_{50}$ = 29 nM
\(\alpha\)-Substitution identified key functional groups to increase potency

The oxygen in \(\text{CH}_2\text{OR}\) possibly interacts with CD73.

Disubstituted analogs 21 and 22 are more potent than mono-substituted 8 and 9.

<table>
<thead>
<tr>
<th>Compound</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD73 IC(_{50}) (nM)</td>
<td>11</td>
<td>18</td>
<td>2.4</td>
<td>0.96</td>
<td>28</td>
<td>559</td>
<td>108</td>
<td>193</td>
<td>387</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD73 IC(_{50}) (nM)</td>
<td>1.3</td>
<td>>5000</td>
<td>97</td>
<td>10</td>
<td>23</td>
<td>31</td>
<td>0.57</td>
<td>0.53</td>
</tr>
</tbody>
</table>
Discovery of potent and orally bioavailable CD73 Inhibitor **OP-5244**

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>Biochem</th>
<th>H1568</th>
<th>EMT6</th>
<th>Mouse PO (200mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IC$_{50}$ (nM)</td>
<td>EC$_{50}$ (nM)</td>
<td>EC$_{50}$ (nM)</td>
<td>AUC$_{\text{inf}}$ (µM*hr)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0.52</td>
<td>-</td>
<td>-</td>
<td>no oral exposure</td>
</tr>
<tr>
<td>AB680*</td>
<td></td>
<td>0.86</td>
<td>3.3</td>
<td>198</td>
<td>Clinical trial (IV formulation)</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>0.25</td>
<td>0.79</td>
<td>14</td>
<td>45.1</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>1.0</td>
<td>10.4</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- OP-5244 has comparable potency to bisphosphonic acid series
- OP-5244 shows good oral bioavailability in mouse

Co-crystal structures confirmed key interactions for potency improvement of **OP-5244**

- **CH₂OH/CH₂OMe H-bonds with Arg 354/395**
- **Replaced the phosphonate H-bond interactions**

OP-5244: $IC_{50} = 0.25$ nM
OP-5244 fully suppresses ADO Production

- OP-5244 inhibited ADO production from AMP in tumor cells & CD8+ T Cell (EC$_{50}$ = 0.22 nM)
- A CD73-targeted antibody incompletely inhibits AMP conversion to ADO
OP-5244 rescues immunosuppressive effects of AMP on T cells

OP-5244 rescued CD8+ T cell proliferation and cytokine (IFNγ and TNFα) production in the presence of AMP.
OP-5244 reduces tumor size, ADO/AMP ratio and reverses immunosuppression in vivo

- OP-5244 exhibits anti-tumor effects as a single agent
- OP-5244 modulates intra-tumoral adenosine pathway
- OP-5244 activates tumor-mediated immune response

![Graphs showing tumor size, ADO/AMP modulation, and exposure of OP-5244](image)

EMT-6 Murine Breast Cancer Model in BALB/c Mice

- **Tumor Size**
- **ADO/AMP Modulation**
- **Exposure of OP-5244**

E.G7-OVA Murine T Cell Lymphoma Model in C57BL6 Mice

- **Tumor Size**
- **CD8⁺ Cytotoxic T cells**
- **CD8⁺/Treg Ratio**

- OP-5244: 15 mg/kg/day mini pump infusion
- Tumor measurement on Day 13
- Tumor adenosine, exposure measurement on Day 13
 - *, p<0.05; ****, p<0.0001 by t-test

- OP-5244: 150 mg/kg, BID x 16, PO
- Tumor measurement on Day 15
- TIL analysis on Day 16
 - *, p<0.05; **, p<0.01 by t-test

DO NOT POST
Upcoming AACR presentations featuring ORIC-533 development candidate

- **Poster #10268**: An orally bioavailable inhibitor of CD73 reverts intratumoral immunosuppression and promotes anti-tumor responses
 - Significant single agent anti-tumor activity of ORIC-533 associates with reversed immunosuppression
- **Poster #4317**: CD73 inhibition with a novel orally bioavailable small molecule blocks adenosine production and rescues T-cells activation in high AMP conditions
Conclusions

• Designed novel orally bioavailable mono-phosphonic acid CD73 inhibitors

• Ether phosphonic acids with α,α-disubstitution gained additional interactions with CD73 and further potency enhancement
 – equipotent relative to the bisphosphonic acid series

• Small molecule CD73 inhibitor represents a potential therapeutic approach to reverse immunosuppression within the tumor microenvironment
 – **OP-5244** fully rescues T cell proliferation and cytokine production from ADO-mediated suppression *in vitro*
 – **OP-5244** reduces tumor size, modulates intra-tumoral ADO pathway and reverses immunosuppression *in vivo*
 – **OP-5244** is a prototype for further optimization/clinical candidate identification
Acknowledgements of the ORIC CD73 team

Bob Warne
Brenda Chan
Brian Blank
Chudi Ndubaku
Daqing Sun
Dena Sutimantanapi
Erica Jackson
Frank Duong
Jae Chang
Jared Moore

Jessica Sun
John Eksterowicz
Lori Friedman
Melissa R. Junttila
Natalie Yuen
Qiuping Ye

Tatiana Zavorotinskaya
Todd Metzger
Tom Huang
Valeria Fantin

Wayne Kong
Xi Chen
Xiaohui Du
Yuping Chen
Zhensheng Wang

PepTech
Proteros biostructures GmbH